Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Shyan-Lung Lin

Feng Chia University, China

Title: Assessment of autonomic dysfunctions in patients with Parkinson’s disease by cerebrovascular regulation to CO2 reactivity

Biography

Biography: Shyan-Lung Lin

Abstract

The relationship between changes in cerebral blood flow and arterial carbon dioxide tension can be applied to assess cerebrovascular function with steady-state and transient hypercapnia, however, both responses were found to be similar. The purpose of this study is to evaluate the cerebrovascular response to carbon dioxide (CO2) in patients with Parkinson’s disease (PD) and explored the interaction between cerebral auto-regulation and ventilatory control by using nonlinear regression models. 18 PD patients underwent hyperventilation to stimulate cerebral auto-regulation based on CO2 reactivity during the experiment. The cerebral vasomotor reactivity (CVMR) measurements were compared by performing nonlinear regression of the cerebral blood flow velocity (CBFV) versus the end-tidal partial pressure of carbon dioxide (PETCO2). The cerebrovascular conductance index (CVCi) was also derived to minimize the effects of arterial blood pressure on CVMR estimation and to quantify the relationship between CVCi and PETCO2. Statistical analysis of significance values between PD patients and healthy groups was evaluated. The results showed that the PD patients demonstrated a significantly lower level of CBFVmax (%) (39.24±30.17%) than did the healthy elders (78.59±28.68%) with Claassens et al.’s model. With Battisti-Charbonney et al.’s model, significance was found in CBFVmax (%) (56.39±20.42%) of PD patients in comparison with healthy elders (97.95±29.41%), and in both CBFVmax(%) and PETCO2 (1.19±1.24 mmHg) range in comparison with healthy youths (86.39±29.80%; 2.89±2.14 mmHg).